Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1987536.v2

ABSTRACT

Objective To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the U.S. Animals 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. Procedures Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory and epidemiological information through a standardized One Health surveillance process developed by CDC and partners. Results Among dogs and cats identified through passive surveillance, 94% (n=87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days post exposure in both cats and dogs. Antibodies were detected starting 5 days post exposure and titers were highest at 9 days in cats and 14 days in dogs. Conclusions and Clinical Relevance Our data support that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that includes both people and animals is necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.05.475172

ABSTRACT

Free-ranging white-tailed deer (Odocoileus virginanus) across the United States are increasingly recognized as involved in SARS-CoV-2 transmission cycles. Through a cross-sectional study of 80 deer at three captive cervid facilities in central and southern Texas, we provide evidence of 34 of 36 (94.4%) white-tailed deer at a single captive cervid facility seropositive for SARS-CoV-2 by neutralization assay (PRNT90), with endpoint titers as high as 1280. In contrast, all tested white-tailed deer and axis deer (Axis axis) at two other captive cervid facilities were seronegative, and SARS-CoV-2 RNA was not detected in respiratory swabs from deer at any of the three facilities. These data support transmission among captive deer that cannot be explained by human contact for each infected animal, as only a subset of the seropositive does had direct human contact. The facility seroprevalence was more than double of that reported from wild deer, suggesting that the confined environment may facilitate transmission. Further exploration of captive cervids and other managed animals for their role in the epizootiology of SARS-CoV-2 is critical for understanding impacts on animal health and the potential for spillback transmission to humans or other animal taxa.

3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1005788.v1

ABSTRACT

Background:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of coronavirus disease (COVID-19), which continues to cause infections and mortality worldwide. SARS-CoV-2 is transmitted primarily via the respiratory route and has experimentally been found to be stable on surfaces for multiple days. Flies (Diptera) and other arthropods mechanically transmit several pathogens, including turkey coronavirus. A previous experimental study demonstrated house flies, Musca domestica, can mechanically transmit SARS-CoV-2, but the ability of flies in general to acquire and deposit this virus in natural settings has not been explored. The purpose of this study was to explore the possibility of mechanical transmission of SARS-CoV-2 by peridomestic insects and their potential as a xenosurveillance tool for detection of the virus.Methods:In order to optimize chances of viral detection, flies were trapped in homes where at least one confirmed human COVID-19 case(s) resided. Sticky and liquid baited fly traps were deployed inside and outside of the homes of SARS-CoV-2 human cases in Brazos, Bell, and Montgomery Counties, from June to September 2020. Flies from sticky traps were identified, pooled by taxa, homogenized, and tested for the presence of SARS-CoV-2 RNA using qRT-PCR. Liquid traps were drained, and the collected fluid similarly tested after RNA concentration. Experimental viral detection pipeline and viral inactivation were confirmed in a Biosafety Level 3 lab.  As part of a separate ongoing study, companion animals in the home were sampled and tested for SARS-CoV-2 on the same day of insect trap deployment.Results:We processed the contents of 133 insect traps from 44 homes, which contained over 1,345 individual insects of 11 different Diptera families and Blattodea.These individuals were grouped into 243 pools, and all tested negative for SARS-CoV-2 RNA.  Dead flies exposed to SARS-CoV-2 in a BSL3 lab were processed using the same methods and viral RNA was detected by RT-PCR. Fourteen traps in seven homes were deployed on the day that cat or dog samples tested positive for SARS-CoV-2 RNA by nasal, oral, body, or rectal samples.Conclusions:This study presents evidence that biting and non-biting flies are not likely to contribute to mechanical transmission of SARS-CoV-2 or be useful in xenosurveillance for SARS-CoV-2.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.20.21249279

ABSTRACT

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic.


Subject(s)
Tetanus
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.08.416339

ABSTRACT

The natural infections and epidemiological roles of household pets in SARS-CoV-2 transmission are not understood. We conducted a longitudinal study of dogs and cats living with at least one SARS-CoV-2 infected human in Texas and found 47.1% of 17 cats and 15.3% of 59 dogs from 25.6% of 39 households were positive for SARS-CoV-2 via RT-PCR and genome sequencing or neutralizing antibodies. Virus was isolated from one cat. The majority (82.4%) of infected pets were asymptomatic. Re-sampling of one infected cat showed persistence of viral RNA at least 32 d-post human diagnosis (25 d-post initial test). Across 15 antibody-positive animals, titers increased (33.3%), decreased (33.3%) or were stable (33.3%) over time. A One Health approach is informative for prevention and control of SARS-CoV-2 transmission.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL